Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 747
Filtrar
1.
Plant Physiol Biochem ; 208: 108479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461752

RESUMO

Drought is known to be the most important constraint to the growth and yield of agricultural products in the world, and plant symbiosis with arbuscular mycorrhizal fungi (AMF) can be a way to reduce drought stress negative impacts. A two-year experiment to investigate the factorial combination of mycorrhizal fungi (Glomus mosseae, Glomus intraradices, Control) and phosphorus fertilizer (application and non-application of phosphorus) on fruit yield and phenolic acids changes bitter gourd under different irrigation regimes as a split factorial based on a randomized complete block design. Three irrigation regimes, including irrigation after 20%, 50%, and 80% available soil water content depletion (ASWD), were considered in the main plots. The results showed that under water deficit stress, fruit yield and physiological (photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), RWC, total chlorophyll, and root colonization) parameters decreased compared to 20% ASWD, and biochemical (proline, soluble sugar, MDA, CAT, SOD, phenol) parameters and fruit phenolic acids (caffeic acid, coumaric acid, ferulic acid) increased. However, the inoculation of AMF and phosphorus fertilizer in three irrigation regimes decreased MDA content, but physiological and biochemical parameters and fruit phenolic acids were increased. In this study, the factorial combination of AMF and sufficient phosphorus improved the resistance of bitter gourd to water deficit, and this not only improved fruit yield but also increased fruit phenolic acids under 80% ASWD, which can be an innovation in the management of water resources and the production industry of medicinal plants with high antioxidant properties in water deficit areas.


Assuntos
Momordica charantia , Micorrizas , Fertilizantes , Frutas , Micorrizas/fisiologia , Fósforo , Água
2.
Plant Physiol Biochem ; 208: 108515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484681

RESUMO

Pericarp color is a prominent agronomic trait that exerts a significant impact on consumer and breeder preferences. Genetic analysis has revealed that the pericarp color of bitter gourd is a quantitative trait. However, the underlying mechanism for this trait in bitter gourd remains largely unknown. In the present study, we employed bulked segregant analysis (BSA) to identify the candidate genes responsible for bitter gourd pericarp color (specifically, dark green versus white) within F2 segregation populations resulting from the crossing of B07 (dark green pericarp) and A06 (white pericarp). Through genomic variation, genetic mapping, and expression analysis, we identified a candidate gene named McPRR2, which was a homolog of Arabidopsis pseudo response regulator 2 (APRR2) encoded by LOC111023472. Sequence alignment of the candidate gene between the two parental lines revealed a 15-bp nucleotide insertion in the coding region of LOC111023472, leading to a premature stop codon and potentially causing a loss-of-function mutation. qRT-PCR analysis demonstrated that the expression of McPRR2 was significantly higher in B07 compared to A06, and it was primarily expressed in the immature fruit pericarp. Moreover, overexpression of McPRR2 in tomato could enhance the green color of immature fruit pericarp by increasing the chlorophyll content. Consequently, McPRR2 emerged as a strong candidate gene regulating the bitter gourd pericarp color by influencing chlorophyll accumulation. Finally, we developed a molecular marker linked to pericarp color, enabling the identification of genotypes in breeding populations. These findings provided valuable insights into the genetic improvement of bitter gourd pericarp color.


Assuntos
Momordica charantia , Momordica charantia/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo , Clorofila
3.
PLoS One ; 19(3): e0298163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498469

RESUMO

BACKGROUND: Traditionally Momordica charantia (Bitter gourd) is known for its blood glucose lowering potential. This has been validated by many previous studies based on rodent models but human trials are less convincing and the physiological mechanisms underlying the bioactivity of Bitter gourd are still unclear. The present study compared the effects of whole fruit or stems-leaves from five different Bitter gourd cultivars on metabolic control in adult diabetic obese Göttingen Minipigs. METHODS: Twenty streptozotocin-induced diabetic (D) obese Minipigs (body weight ~85 kg) were subdivided in mildly and overtly D pigs and fed 500 g of obesogenic diet per day for a period of three weeks, supplemented with 20 g dried powdered Bitter gourd or 20 g dried powdered grass as isoenergetic control in a cross-over, within-subject design. RESULTS: Bitter gourd fruit from the cultivars "Palee" and "Good healthy" reduced plasma fructosamine concentrations in all pigs combined (from 450±48 to 423±53 and 490±50 to 404±48 µmol/L, both p<0.03, respectively) indicating improved glycemic control by 6% and 17%. These effects were statistically confirmed in mildly D pigs but not in overtly D pigs. In mildly D pigs, the other three cultivars of fruit showed consistent numerical but no significant improvements in glycemic control. The composition of Bitter gourd fruit was studied by metabolomics profiling and analysis identified three metabolites from the class of triterpenoids (Xuedanoside H, Acutoside A, Karaviloside IX) that were increased in the cultivars "Palee" (>3.9-fold) and "Good healthy" (>8.9-fold) compared to the mean of the other three cultivars. Bitter gourd stems and leaves from the cultivar "Bilai" increased plasma insulin concentrations in all pigs combined by 28% (from 53±6 to 67±9 pmol/L, p<0.03). The other two cultivars of stems and leaves showed consistent numerical but no significant increases in plasma insulin concentrations. The effects on plasma insulin concentrations were confirmed in mildly D pigs but not in overtly D pigs. CONCLUSIONS: Fruits of Bitter gourd improve glycemic control and stems-leaves of Bitter gourd increase plasma insulin concentrations in an obese pig model for mild diabetes. The effects of Bitter gourd fruit on glycemic control seem consistent but relatively small and cultivar specific which may explain the varying results of human trials reported in the literature.


Assuntos
Diabetes Mellitus , Insulinas , Medicina Tradicional Chinesa , Momordica charantia , Animais , Frutosamina , Frutas , Obesidade , Suínos , Porco Miniatura
4.
Food Chem ; 445: 138479, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387310

RESUMO

A first-time green extraction and LCMSMS analysis for karavilosides (KVs) VIII, X, and XI in different parts (skin, pith, and seed) of the fresh and dried fruit of bitter melon (BM) is reported herein. Ultrasonication for green extraction whereas, LCMS/MS for KVs quantification were used. More extract yield (675.80 ± 163.57 mg/g) was observed for the dried fruit parts compared to the fresh BM-fruit parts (513.20 ± 75.42 mg/g). The fresh skin (343.40 ± 54.07 mg/4g) and dried seeds (311.80 and 77.95 ± 38.98) exhibited more yield whereas, the solvent yield (mg/4mg) observed was; H2O (651.70) > EtOH (227.20) > EtAC (163.30) > ACT (146.80). The LCMS/MS yield for the KVs revealed a descending order; KVXI (2376.44 ppb) > KVX (639.17 ppb) > KVVIII (599.83 ppb). More correlation was seen for the solvent Vs extract yield whereas, the KVs revealed more correlation for the BM-fruit part (P = 0.05). The study comprehensively characterized the parts of fresh and dried BM-fruits in terms of extract yield and KVs amount.


Assuntos
Momordica charantia , Triterpenos , Frutas/química , Glicosídeos , Extratos Vegetais/análise , Solventes
5.
Int J Biol Macromol ; 263(Pt 2): 130473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423437

RESUMO

Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.


Assuntos
Antioxidantes , Momordica charantia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Anti-Inflamatórios
6.
J Appl Biomater Funct Mater ; 22: 22808000231221067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217369

RESUMO

The research on tissue engineering applications has been progressing to manufacture ideal tissue scaffold biomaterials. In this study, a double-layered electrospun biofiber scaffold biomaterial including Polycaprolactone (PCL)/Collagen (COL) fibrous inner layer and PCL/ Momordica charantia (MC) and Hypericum perforatum (HP) oils fibrous outer layer was developed to manufacture a functional, novel tissue scaffold with the advantageous mechanical and biological properties. The main approach was to combine the natural perspective using medicinal oils with an engineering point of view to fabricate a potential functional scaffold for tissue engineering. Medicinal plants MC and HP are rich in functional oils and incorporation of them in a tissue scaffold will unveil their potential to augment both new tissue formation and wound healing. In this study, a novel double-layered scaffold prototype was fabricated using electrospinning technique with two PCL fiber layers, first is composed of collagen, and second is composed of oils extracted from medicinal plants. Initially, the composition of plant oils was analyzed. Thereafter the biofiber scaffold layers were fabricated and were evaluated in terms of morphology, physicochemistry, thermal and mechanical features, wettability, in vitro bio-degradability. Double-layered scaffold prototype was further analyzed in terms of in vitro biocompatibility and antibacterial effect. The medicinal oils blend provided antioxidant and antibacterial properties to the novel PCL/Oils layer. The results signify that inner PCL/COL layer exhibited advanced biodegradability of 8.5% compared to PCL and enhanced wettability with 11.7° contact angle. Strength of scaffold prototype was 5.98 N/mm2 thanks to the elastic PCL fibrous matrix. The double-layered functional biofiber scaffold enabled 92% viability after 72 h contact with fibroblast cells and furthermore provided feasible attachment sites for the cells. The functional scaffold prototype's noteworthy mechanical, chemical, and biological features enable it to be suggested as a different novel biomaterial with the potential to be utilized in tissue engineering applications.


Assuntos
Hypericum , Momordica charantia , Engenharia Tecidual , Tecidos Suporte/química , Materiais Biocompatíveis/química , Colágeno/química , Poliésteres/química , Óleos de Plantas , Antibacterianos/química
7.
Biomed Chromatogr ; 38(2): e5779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050189

RESUMO

To clarify the residue behavior and possible dietary risk of abamectin in fresh corn, bitter melon, and Fritillaria, a method was developed for the simultaneous determination of abamectin residues in fresh corn, bitter melon, and Fritillaria by QuEChERS (quick, easy, cheap, effective, rugged, safe) ultra-performance liquid chromatography-tandem mass spectrometry. The mean recovery of abamectin in fresh corn, bitter melon, and Fritillaria was 86.48%-107.80%, and the relative standard deviation was 2.07%-10.12%. The detection rates of abamectin residues in fresh corn, bitter melon, and Fritillaria were 62.50%, 87.50%, and 80.00%, respectively. The residues of abamectin in fresh corn, bitter melon, and Fritillaria were not more than 0.020, 0.019, and 0.087 mg/kg, respectively. Based on these results, dietary risk assessment showed that the risk content of abamectin residues in long- and short-term dietary exposure for Chinese consumers was 61.57% and 0.41%-1.11%, respectively, indicating that abamectin in fresh corn, bitter melon, and Fritillaria in the market would not pose a significant risk to consumers.


Assuntos
Fritillaria , Ivermectina/análogos & derivados , Momordica charantia , Resíduos de Praguicidas , Momordica charantia/química , Zea mays , Medição de Risco , Resíduos de Praguicidas/análise
8.
Nat Prod Res ; 38(6): 1060-1066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37211778

RESUMO

This is the first study describing phenolics of Momordica charantia L. 'Enaja' cultivar (bitter melon) produced in Romania. Total polyphenol content, total tannin content, total flavonoid content, and antioxidant activity of bitter melon stems and leaves, young fruits, and ripe fruits grown in Romania were analysed, along with fruits imported from India. The UPLC-DAD analysis led to the identification of (+)-catechin, (-)-epicatechin, luteolin-3',7-di-O-glucoside, luteolin-7-O-glucoside and vanillic acid. (-)-Epicatechin (859 µg/g) and (+)-catechin (1677 µg/g) were the most abundant compounds in stems and leaves, while in the ripe fruits, luteolin-7-O-glucoside (310 µg/g) was the main phenolic. Stems and leaves were the most active for capturing free DPPH radicals (IC50 = 216.9 ± 11.91 µg/ml); the scavenging activity strongly correlated with the flavonoid content (r = 0.8806, r2 = 0.7754). Momordica charantia fruits from Romania, both young and ripe, are a source of polyphenols as valuable as those imported from India.


Assuntos
Catequina , Momordica charantia , Antioxidantes/farmacologia , Momordica charantia/química , Romênia , Fenóis/análise , Flavonoides , Radicais Livres , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
Braz. j. biol ; 84: e255605, 2024. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355882

RESUMO

Abstract Combining ability analysis provides useful information for the selection of parents, also information regarding the nature and magnitude of involved gene actions. Crops improvement involves strategies for enhancing yield potentiality and quality components. Targeting the improvement of respective characters in bitter gourd, combining ability and genetic parameters for 19 characters were estimated from a 6×6 full diallel analysis technique. The results revealed that the variances due to general combining ability (GCA) and specific combining ability (SCA) were highly significant for most of the important characters. It indicated the importance of both additive and non-additive gene actions. GCA variances were higher in magnitude than SCA variances for all the characters studied indicating the predominance of the additive gene effects in their inheritance. The parent P2 (BG 009) appeared as the best general combiner for earliness; P1 (BG 006) for number of fruits, average single fruit weight and fruit yield; P4 (BG 027) for node number of first female flower and days to seed fruit maturity; P3 (BG 011) for fruit length and thickness of the fruit flesh; P5 (BG 033) for 100-seed weight; and P6 for number of nodes per main vine. The SCA effect as well as reciprocal effect was also significant for most of the important characters in different crosses.


Resumo A análise da capacidade de combinação fornece informações úteis para a seleção dos pais, também informações sobre a natureza e a magnitude das ações dos genes envolvidos. A melhoria das safras envolve estratégias para aumentar a potencialidade da produção e os componentes de qualidade. Visando ao aprimoramento dos respectivos caracteres em cabaça-amarga, capacidade de combinação e parâmetros genéticos para 19 caracteres, foram estimados a partir de uma técnica de análise dialélica completa 6 × 6. Os resultados revelaram que as variâncias, devido à capacidade geral de combinação (GCA) e capacidade específica de combinação (SCA), foram altamente significativas para a maioria dos caracteres importantes. Indicou a importância das ações gênicas aditivas e não aditivas. As variâncias GCA foram maiores em magnitude do que as variâncias SCA para todos os caracteres estudados, indicando a predominância dos efeitos do gene aditivo em sua herança. O pai P2 (BG 009) apareceu como o melhor combinador geral para o início; P1 (BG 006) para número de frutos, peso médio de um único fruto e produção de frutos; P4 (BG 027) para número de nó da primeira flor fêmea e dias para a maturidade do fruto da semente; P3 (BG 011) para comprimento do fruto e espessura da polpa do fruto; P5 (BG 033) para peso de 100 sementes; e P6 para o número de nós por videira principal. O efeito SCA, bem como o efeito recíproco, também foi significativo para a maioria dos personagens importantes em cruzamentos diferentes.


Assuntos
Momordica charantia , Produtos Agrícolas , Flores , Melhoria de Qualidade , Frutas/genética
10.
Plant Physiol Biochem ; 205: 108194, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992418

RESUMO

Soil salinity is one of the increasing problems in agricultural fields in many parts of the world, adversely affecting the performance and health of the plants. As a pleiotropic signal and antioxidant molecule in both animals and plants, melatonin has been reported to possess significant roles in combating with stress factors, in general and salt stress, in particular. In this study, the interactive effects of melatonin (0, 75, and 150 µM) and salt stress (0, 50 and 100 mM NaCl) were investigated by assaying the some agronomic, physlogical and biochemical attributes and essential oil compounds of bitter melon (Momordica charantia). The results showed that exogenous melatonin could promote net photosynthetic rate (Pn) and PSII efficiency (Fv/Fm), increase K+ content and activity of antioxidant enzymes and decrease reactive oxygen species, malondialdehyde and Na+ content in stress-submitted seedlings, in comparison to the non-stressed seedlings (p < 0.05). Melatonin increased content of essential oils. Concerning the major compounds of fruits of bitter melon, charantin, momordicin and cucurbitacin were increased with the melatonin treatments, whereas they were critically decreased with the salt stress. In addition, melatonin increased the antioxidant capacity in fruits under non-saline and salinity conditions. Amid the concentrations of melatonin, plants treated with 150 µM of melatonin under either non-saline or saline conditions showed better performance and productivity. Therefore, application of 150 µM melatonin resulted in a significant improvement of salinity tolerance and essential oil compounds in bitter melon plant, suggesting this as an efficient 'green' strategy for sustainable crop production under salt stress conditions.


Assuntos
Melatonina , Momordica charantia , Óleos Voláteis , Melatonina/farmacologia , Antioxidantes/farmacologia , Frutas/química , Tolerância ao Sal , Óleos Voláteis/farmacologia , Salinidade
11.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833943

RESUMO

Bitter gourd (Momordica charantia L.) contains rich bioactive ingredients and secondary metabolites; hence, it has been used as medicine and food product. This study systematically quantified the nutrient contents, the total content of phenolic acids (TPC), flavonoids (TFC), and triterpenoids (TTC) in seven different cultivars of bitter gourd. This study also estimated the organic acid content and antioxidative capacity of different cultivars of bitter gourd. Although the TPC, TFC, TTC, organic acid content, and antioxidative activity differed significantly among different cultivars of bitter gourd, significant correlations were also observed in the obtained data. In the metabolomics analysis, 370 secondary metabolites were identified in seven cultivars of bitter gourd; flavonoids and phenolic acids were significantly more. Differentially accumulated metabolites identified in this study were mainly associated with secondary metabolic pathways, including pathways of flavonoid, flavonol, isoflavonoid, flavone, folate, and phenylpropanoid biosyntheses. A number of metabolites (n = 27) were significantly correlated (positive or negative) with antioxidative capacity (r ≥ 0.7 and p < 0.05). The outcomes suggest that bitter gourd contains a plethora of bioactive compounds; hence, bitter gourd may potentially be applied in developing novel molecules of medicinal importance.


Assuntos
Momordica charantia , Antioxidantes , Extratos Vegetais , Flavonoides , Frutas
12.
Pak J Pharm Sci ; 36(5): 1451-1456, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37869921

RESUMO

Endothelial dysfunction (ED) is a significant risk factor of blood vessel related diseases of diabetes and this study evaluate the effect of adding Momordica charantia (Mc) to glibenclamide (GLB) on ED markers in diabetic rats. Streptozotocin (STZ-40mg/kg b. w.) induced diabetic rats were randomly put into 3 groups with 10 rats/group; diabetic control [DC] group, glibenclamide treated group (GLB -2.5mg/kg) and GLB-Mc treated group (2.5mg/kg + 400mg/kg). Serum glucose was measured weekly for eight weeks whereas insulin, sVCAM-1, vWF-Ag and interleukin-6 [IL-6] were measured at week 0 and week 8. Luciferase assay was performed to determine luminescence. At week 8, GLB and GLB-Mc groups revealed improvements in blood glucose and insulin concentrations (P≤0.05) when compared to corresponding baseline values with GLB-Mc group showing slightly greater improvements. GLB-M c group also revealed improvement (P≤0.05) in vWF-Ag, sVCAM-1 and IL-6 concentrations but was non-significant in GLB group when compared to corresponding baseline values. Comparison between GLB and GLB-Mc group showed significantly high concentration of sVCAM-1 in GLB group (P≤0.05) due to its minimal effect on TGR5 activation. We conclude that adding M. charantia to GLB may be a useful choice for modulating diabetes induced ED due to its stimulatory effect on TGR5 receptors.


Assuntos
Diabetes Mellitus Experimental , Momordica charantia , Ratos , Animais , Glibureto/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Interleucina-6 , Fator de von Willebrand , Extratos Vegetais/farmacologia , Glicemia , Insulina , Hipoglicemiantes/farmacologia
13.
Biomed Pharmacother ; 168: 115726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862973

RESUMO

Momordica charantia polysaccharide (MCP) is a potential drug for the prevention and alleviation of diabetes mellitus (DM) and diabetic retinopathy (DR). This study aimed to investigate the potential protective effects of MCP on early-stage DR and explore the underlying mechanisms. The model group (DM group) and treatment group (D+H group) were established by inducing type 1 DM using a single dose of streptozotocin (STZ) at 60 mg/kg. After modeling, the D+H group was orally administered a 500 mg/kg dose of MCP solution once daily for 12 weeks. Monitoring of systemic indicators (FBG, body weight, general condition) and retinal tissue inflammation and apoptosis (HE staining, IL-6, MCP-1, TNF-α, VEGF, NF-κB, Caspase-3) in this study demonstrated that MCP intervention alleviated both DM and DR. MCP improved the body weight and general condition of DM rats by reducing FBG levels. It also enhanced the anti-inflammatory and anti-apoptotic capabilities of retinal neurons and microvessels by modulating the actions of cytokines, thereby further regulating the inflammation and apoptosis of retinal neurons and microvessels. The underlying mechanisms may be associated with the downregulation of NF-κB and Caspase-3 pathway protein expression, as well as the downregulation of mRNA expression of NF-κB and Caspase-3 pathway genes. Further research is needed to elucidate the potential mechanisms underlying the protective effects of MCP on DR. MCP may emerge as a selective medication for the prevention and alleviation of DM and a novel natural medicine for the prevention and alleviation of DR.


Assuntos
Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Momordica charantia , Ratos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Retinopatia Diabética/genética , NF-kappa B/uso terapêutico , Caspase 3 , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inflamação/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Peso Corporal
14.
Molecules ; 28(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687011

RESUMO

Plant-derived extracellular vesicles are functional nanovesicles that have significant applications in both disease prevention and treatment, as well as for use as drug carriers. Momordica charantia is a widely consumed food that has both medicinal and nutritional properties and has shown intervention in diabetes and inflammation caused by oxidative damage. In this study, Momordica charantia-derived extracellular vesicles (MCEVs) were extracted and demonstrated to have excellent antioxidant activity by characterization, lipid composition analysis, protein domain analysis, and in vitro antioxidant measurement. In addition, in vivo studies indicated that the MCEVs could restore ulcerative colitis by regulating oxidation and inflammatory factors. Therefore, the antioxidant properties of MCEVs may be important in protecting the colon from inflammation, which provides new insights into the application of MCEVs as drugs or vectors for intervention in ulcerative colitis.


Assuntos
Colite Ulcerativa , Vesículas Extracelulares , Momordica charantia , Colite Ulcerativa/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Inflamação
15.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762563

RESUMO

The challenge of mitigating the decline in both yield and fruit quality due to the intrusion of powdery mildew (PM) fungus looms as a pivotal concern in the domain of bitter melon cultivation. Yet, the intricate mechanisms that underlie resistance against this pathogen remain inscrutable for the vast majority of bitter melon variants. In this inquiry, we delve deeply into the intricate spectrum of physiological variations and transcriptomic fluctuations intrinsic to the PM-resistant strain identified as '04-17-4' (R), drawing a sharp contrast with the PM-susceptible counterpart, designated as '25-15' (S), throughout the encounter with the pathogenic agent Podosphaera xanthii. In the face of the challenge presented by P. xanthii, the robust cultivar displays an extraordinary capacity to prolong the initiation of the pathogen's primary growth stage. The comprehensive exploration culminates in the discernment of 6635 and 6954 differentially expressed genes (DEGs) in R and S strains, respectively. Clarification through the lens of enrichment analyses reveals a prevalence of enriched DEGs in pathways interconnected with phenylpropanoid biosynthesis, the interaction of plants with pathogens, and the signaling of plant hormones. Significantly, in the scope of the R variant, DEGs implicated in the pathways of plant-pathogen interaction phenylpropanoid biosynthesis, encompassing components such as calcium-binding proteins, calmodulin, and phenylalanine ammonia-lyase, conspicuously exhibit an escalated tendency upon the encounter with P. xanthii infection. Simultaneously, the genes governing the synthesis and transduction of SA undergo a marked surge in activation, while their counterparts in the JA signaling pathway experience inhibition following infection. These observations underscore the pivotal role played by SA/JA signaling cascades in choreographing the mechanism of resistance against P. xanthii in the R variant. Moreover, the recognition of 40 P. xanthii-inducible genes, encompassing elements such as pathogenesis-related proteins, calmodulin, WRKY transcription factors, and Downy mildew resistant 6, assumes pronounced significance as they emerge as pivotal contenders in the domain of disease control. The zenith of this study harmonizes multiple analytical paradigms, thus capturing latent molecular participants and yielding seminal resources crucial for the advancement of PM-resistant bitter melon cultivars.


Assuntos
Momordica charantia , Humanos , Momordica charantia/genética , Transcriptoma , Calmodulina , Transdução de Sinais , Erysiphe
16.
Environ Sci Pollut Res Int ; 30(44): 99584-99604, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37620696

RESUMO

The use of coumarin (COU) to alleviate the phytotoxic effects of salinity has great potential in improving the phytoremediation of saline and alkaline soils. 30-day bitter gourd plants were exposed to 15 dS m‒1 salinity of neutral (NaCl and Na2SO4) and alkaline (Na2CO3 and NaHCO3) salts. 60-day plants were harvested to record different growth, physiological and biochemical attributes. Salinity significantly subsided plant growth, chlorophyll, photosynthesis, and nutrient acquisition. Salinity induced notable oxidative damage in plants that displayed higher relative membrane permeability (RMP), accumulated elevated ROS (H2O2 and O2•‒) and MDA levels alongside intensified lipoxygenase (LOX) activity. The production of cytotoxic methylglyoxal was also significantly higher in plants under salinity. COU seed priming (50, 100 and 150 mg L‒1) promoted plant growth by circumventing oxidative injury and intensifying oxidative defense. Further, COU maintained the intricate balance between reduced (GSH) and oxidized (GSSG) glutathione to diminish ion excess toxicity, thereby facilitating the phytoremediation of saline soils. The lower doses of COU promoted methylglyoxal and ROS detoxification systems that, in turn, lessened the phytotoxic effects of salinity. COU restored ions homeostasis by augmenting osmotic adjustment in plants under salinity.


Assuntos
Momordica charantia , Momordica charantia/metabolismo , Espécies Reativas de Oxigênio , Biodegradação Ambiental , Solo , Peróxido de Hidrogênio , Aldeído Pirúvico , Antioxidantes/metabolismo , Oxirredução , Glutationa/metabolismo , Cumarínicos , Homeostase , Salinidade
17.
Fish Shellfish Immunol ; 140: 108980, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532068

RESUMO

An 8-week feeding trial was conducted to explore the feasibility of Momordica charantia saponins (MCS) administration to facilitate the protein-sparing action of high carbohydrate in diets for juvenile common carp (Cyprinus carpio) with initial mass of 5.41 ± 0.02 g. Based on our previous study, four diets with different the ratio of protein and carbohydrate (P/C ratio) were designed: 32%P/40%C, 30%P/43%C, 28%P/46%C, 28%P/46%C supplemented with 0.16% MCS (28%P/46%C + MCS). Each diet treatment was divided into 3 replicates. Results revealed that 30%P/43%C group increased growth performance and intestinal digestion, decreased intestinal inflammation, and optimized the intestinal microbiota compared to 32%P/40%C group, which presented the stronger protein-sparing action of high carbohydrate. But if the P/C ratio reduced to 28%P/46%C or less, the saving action would be restrained. However, compared to the 30%P/43%C and 28%P/46%C groups, 28%P/46%C + MCS group significantly elevated growth performance and activities of digestive enzymes and antioxidative enzymes, whilst the opposite trend occurred in the contents of glucose, triglyceride, total cholesterol, low density lipoprotein cholesterol, blood urea nitrogen, glutamic oxalacetic transaminase, glutamic-pyruvic transaminase and malondialdehyde. In addition, 28%P/46%C + MCS group markedly upregulated the expressions of GH/IGF axis genes, genes involved in protein synthesis, antioxidant genes and anti-inflammatory cytokine, whilst the opposite trend occurred in the expressions of pro-inflammatory cytokines. Moreover, 28%P/46%C + MCS group obtained the remarkably higher Enterococcus proportion and lower Lactococcus proportion compared to the 30%P/43%C and 28%P/46%C groups, whereas the opposite occurred in 30%P/43%C group, which indicated that there existed differences in the improvement mechanism on intestinal microflora composition between MCS and appropriate P/C ratio. Combined with the above mentioned changes in our research, we concluded that 0.16% MCS administration in a 28%P/46%C diet could facilitate the protein-sparing action of high carbohydrate in diets for common carp, which could decrease the 5% dosage of soybean meal and synchronously reduce the 4% crude protein of diets without affecting the growth and immune ability for common carp.


Assuntos
Carpas , Momordica charantia , Animais , Carpas/metabolismo , Momordica charantia/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Antioxidantes/metabolismo , Carboidratos , Ração Animal/análise
18.
Int J Biol Macromol ; 248: 126022, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506790

RESUMO

Momordica charantia seeds contain a galactose specific lectin and mixture of glycosidases. These bind to lectin-affigel at pH 5.0 and are all eluted at pH 8.0. From the mixture, α-mannosidase was separated by gel filtration (purified enzyme Mr âˆ¼ 238 kDa). In native PAGE (silver staining) it showed three bands that stained with methylumbelliferyl substrate (possible isoforms). Ion exchange chromatography separated two isoforms in 0.5 M eluates and one isoform in 1.0 M eluate. In SDS-PAGE it dissociated to Mr ∼70 and 45 kDa subunits, showing antigenic similarity to jack bean enzyme. MALDI analysis confirmed the 70 kDa band to be α-mannosidase with sequence identity to the genomic sequence of Momordica charantia enzyme (score 83, 29 % sequence coverage). The pH, temperature optima were 5.0 and 60o C respectively. Kinetic parameters KM and Vmax estimated with p-nitrophenyl α-mannopyranoside were 0.85 mM and 12.1 U/mg respectively. Swainsonine inhibits the enzyme activity (IC50 value was 50 nM). Secondary structural analysis at far UV (190-300 nm) showed 11.6 % α-helix and 36.5 % ß-sheets. 2.197 mg of the enzyme was found to interact with 3.75 mg of protein body membrane at pH 5.0 and not at pH 8.0 suggesting a pH dependent interaction.


Assuntos
Lectinas , Momordica charantia , alfa-Manosidase/química , Lectinas/metabolismo , Isoenzimas/metabolismo , Sementes/metabolismo
19.
Sci Rep ; 13(1): 11755, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474706

RESUMO

Artificial neural networks (ANNs) have in recent times found increasing application in predictive modelling of various food processing operations including fermentation, as they have the ability to learn nonlinear complex relationships in high dimensional datasets, which might otherwise be outside the scope of conventional regression models. Nonetheless, a major limiting factor of ANNs is that they require quite a large amount of training data for better performance. Obtaining such an amount of data from biological processes is usually difficult for many reasons. To resolve this problem, methods are proposed to inflate existing data by artificially synthesizing additional valid data samples. In this paper, we present a generative adversarial network (GAN) able to synthesize an infinite amount of realistic multi-dimensional regression data from limited experimental data (n = 20). Rigorous testing showed that the synthesized data (n = 200) significantly conserved the variances and distribution patterns of the real data. Further, the synthetic data was used to generalize a deep neural network. The model trained on the artificial data showed a lower loss (2.029 ± 0.124) and converged to a solution faster than its counterpart trained on real data (2.1614 ± 0.117).


Assuntos
Momordica charantia , Vitis , Fermentação , Bebidas , Redes Neurais de Computação
20.
PLoS One ; 18(6): e0286370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384752

RESUMO

The continuing emergence of SARS-CoV-2 variants has highlighted the need to identify additional points for viral inhibition. Ribosome inactivating proteins (RIPs), such as MAP30 and Momordin which are derived from bitter melon (Momordica charantia), have been found to inhibit a broad range of viruses. MAP30 has been shown to potently inhibit HIV-1 with minimal cytotoxicity. Here we show that MAP30 and Momordin potently inhibit SARS-CoV-2 replication in A549 human lung cells (IC50 ~ 0.2 µM) with little concomitant cytotoxicity (CC50 ~ 2 µM). Both viral inhibition and cytotoxicity remain unaltered by appending a C-terminal Tat cell-penetration peptide to either protein. Mutation of tyrosine 70, a key residue in the active site of MAP30, to alanine completely abrogates both viral inhibition and cytotoxicity, indicating the involvement of its RNA N-glycosylase activity. Mutation of lysine 171 and lysine 215, residues corresponding to those in Ricin which when mutated prevented ribosome binding and inactivation, to alanine in MAP30 decreased cytotoxicity (CC50 ~ 10 µM) but also the viral inhibition (IC50 ~ 1 µM). Unlike with HIV-1, neither Dexamethasone nor Indomethacin exhibited synergy with MAP30 in the inhibition of SARS-CoV-2. From a structural comparison of the two proteins, one can explain their similar activities despite differences in both their active-sites and ribosome-binding regions. We also note points on the viral genome for potential inhibition by these proteins.


Assuntos
COVID-19 , Soropositividade para HIV , HIV-1 , Momordica charantia , Humanos , Lisina , SARS-CoV-2 , Alanina , Proteínas Inativadoras de Ribossomos/farmacologia , Ribossomos , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...